Меню

Математика и биология: что можно считать теоретической наукой?

Давние споры о том, что является теоретической наукой, не утихают. Причин тому много, но прежде всего проблема заключается в использовании математического аппарата для обобщения научных изысканий. Если накопленный массив данных нельзя обработать ни методами статистики, ни при помощи аппарата гауссовой математики, то любая наука мгновенно попадает под категорию -не-совсем научной дисциплины.

Несколько замечаний по этому поводу относительно билогии.

  • 1. Отсутствие биологии, как теоретической науки, связано в т.ч. с применением «гауссовой» мат. статистики и теории вероятности к неравновесноустойчивым объектам (случайные величины независимы, существует вероятность события, а средние значения устойчивы в определённом интервале). В биологии (классификация, эволюционные концепции, экология) применима «квазигиперболическая» статистика (вероятности нет, среднее значение не информативно, даже абсурдно, но есть нежёсткая зависимость величин). Квазигиперболы (распределения, в которых разброс случайных величин неограниченно растёт с ростом числа испытаний) свойство классификации таксонов. (Тут нужна консультация, т.к. я не в теме… есть работы С. Кауфмана, кот. показал, что система из тысяч функционально связанных элементов может обладать небольшим числом устойчивых состояний, если элементы связаны слабо, т.е. имеют не более 2-х входов-выходов…или что-то в этом роде…)
  • 1.1. Где есть феномен самоорганизации, там есть квазигиперболы и наоборот, где есть квазигиперболы, наблюдается феномен самоорганизации.
  • 2. Ген можно рассматривать не только как структуру, определяющую тот или иной признак организма, но как конечную запись удачного процесса преобразования функции «поиск нормы» в результате изменения условий (т.е. первично изменение с последующей перезаписью удачного варианта…но вот обязательна ли сама форма записи?). Это может происходить в т.ч. за счёт сборки гена de novo (как в случае с кодировкой антител). Т.о. можно говорить о ДНК, не как об источнике изменчивости, а как о способе записи удачного варианта структуры-функции (Каков механизм преобразования генетических текстов?). Если ген запись итога оптимально решённой задачи, он должен быть одинаков у всех организмов её решавших. При этом решившие задачу организмы не обязательно родственны.
  • 2.1. Фрактальный рост – порождение бесконечного разнообразия макроструктур из конечного количества субъединиц. Малое изменение фракталообразующих единиц вызывает радикальное изменение макроформы без нарушения целостности и дискретности организма.
  • 2.2. Гены, переключающие развитие зародыша однотипны у всех живых организмов (связать с сродством генома человека и археобактерий)…набор возможных комбинаций для реализации ограничен, конечен и не велик (отличие от «механизмов естественного отбора»). Да, но при этом сбор генов из фрагментов, находящихся в разных участках генома возможен и показан…
  • 3. На всех уровнях организации живого проявляется активность, как принцип.
  • 4. В нормальном состоянии изменчивость низка (структура соотвествует функции). Эволюционное изменение происходит тогда, когда нарушается данное соответствие в результате изменения среды. В состоянии эволюционного скачка изменчивость велика. Изменчивость падает после подбора (delectus, в противопоставление селекции, т.е. отбору по Ч.Дарвину) структуры-функции, т.е. достижения новой нормы, отличной от прежней, нового соотвествия среде. (Отсюда выход на ЭКЭ – экологическую концепцию эволюции) Поиск структуры-функции, соответствующей новым условиям, поиск нормы, генетический поиск – основной акт эволюционного процесса. Эволюция, как смена норм?
  • 4.1. Эволюция блочна, т.е. происходит на всех уровнях организации не с отдельными популяциями, организмами, нуклеотидами, а в экосистеме, затрагивая многие таксоны одновременно с комплексной направленной перестройкой генома у многих организмов в популяциях.
  • 5. Переходных форм нет в принципе, т.к. их нужно искать в раннем эмбриогенезе, когда включается механизм перевода фрактального роста для достижения соответствия структуры-функции новым условиям среды на этапе делекции.
  • 5.1. «Общий предок» - суть идеальный объект, план строения, «архетип», реализация которого в материале и есть эволюция (т.е. это те схемы строения, что мы рисуем с ребятами на зоологии, объясняя через них процесс перехода к внутреннему скелету позвоночных).
  • 5.2. «Рефрены» (ряды направленных рядов изменений, прослеживаемых в процессе эволюции по Ю.В.Чайковскому) соответствуют рядам архетипов «периодической таблицы» И.Ю.Попова («диатропическая сеть» у Чайковского) и указывают на существование периодического закона в биологии, в эволюции живого. Гм…каков механизм заполнения клеток таблицы? Это делаем на уроках, когда составляем таблицу морфофизиологических усложнений у позвоночных от ланцетника до млекопитающих… Но это нужно дополнить единым представлением об эволюции экосистем!
  • 5.3. В то же время есть некий предел усложнения в реализации архетипа, как и некоторое предельное значение вариантов его реализации (это объясняет «Кембрийский взрыв», когда возникло большинство типов и классов современной систематики живого и последующую дифференциацию на отряды, роды, виды, как достижение предела реализации архетипов, т.е. последовательное понижение ранга вновь образующихся таксонов). А что будет по достижению предела? Смена биосфер?
  • 5.4. К табличной форме заставляет обратиться и факт наличия самых сложных форм размножения у простейших, самых сложно структурированных тканей у низших червей… Факты указывают на достижение полноты усложнения структуры-функции на каждом уровне организации живого…Что будет прогнозом в отношении к периодической таблице биологии? В химии – предсказание свойств элементов, а в биологии?
Добавил:Всеволод Гордиенко Дата:2016-12-29 Раздел:Математика